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RCs. Albert  ler, BBtiment A, 54150  Briey,  France 

Received 9 December 1983 

Abstract The paper shows  how various physical 
covariance groups: S0(3), the Lorentz group, the 
general theory of relativity group, the Clifford algebra, 
SU(2) and the conformal group can  easily be related to 
the quaternion group. The quaternion calculus  is intro- 
duced and several physical applications: crystallography, 
the kinematics of rigid  body motion, the Thomas 
precession, the special theory of relativity, classical 
electromagnetism, the equation of motion of the 
general theory of relativity, and Dirac’s  relativistic 
wave equation are discussed. 

1. Introduction 
Several  authors  have,  in  the  pages of this  journal, 
advocated  the  introduction of group  theory  in 
physics  teaching.  Yet,  simple  presentations  together 
with  physical  applications  seem  to  be  scarce.  In 
the  following, I shall  show  that  several of the  major 
covariance  groups of physics  can easily be  related 
to  a finite  group,  namely,  the  abstract  quaternion 
group.  Most (if not all) of the  physical  and 
mathematical  results  presented in this  paper  can  be 
found  scattered  in  the  literature  over a time  inter- 
val  reaching  into  the  19th  century.  After  introduc- 
ing the  quaternion  group  and  the  quaternion 
algebra,  the  paper  analyses  the  connection of vari- 
ous  major  covariance  groups of physics  with  the 
quaternion  group  together  with  important  physical 
applications. 

2. The quaternion group and the quaternion 
algebra 
The  abstract  quaternion  group  (denoted Q) which 
was  discovered by William  Rowan  Hamilton 
(Hankins  1980,  Crowe  1967a,  Hamilton  1931-67, 
Graves 1882-9) in  1843, is constituted  by  the  eight 
elements  *l, *i, *j, *k,  satisfying  the  relations 

t Permanent address: Universitv of Wisconsin-Madison. 
Dept of the History of Science; Madison, Wisconsin 
53706, USA 

R6som6 L’article montre comment plusieurs groupes 
de covariance de la physique: S0(3), le groupe de 
Lorentz, le groupe de la relativitt gtntrale, I’algkbre de 
Clifford, SU(2) et  le groupe conforme peuvent facile- 
ment etre  relits au groupe des quaternions. Le calcul 
quaternionien est introduit et plusieurs applications 
physiques: la cristallographie, la cintmatique du  mouve- 
ment des corps rigides, la prtcession Thomas, la thtorie 
de la relativitt restreinte, l’tquation du mouvement de 
la relativitt gtntrale et l’tquation relativiste de Dirac 
sont traittes. 

i Z = j Z = k Z = i j k = - l  

or,  more explicitly 
i 2 = j z = k z = - 1  
i j  = -ji = k 

j k = - k j = i  
k i = - i k = j  

1 is the  unit  element. The subgroups of Q are: 

(1) 
(1, -1) 
(1,  -1,  i, -i) 
(1, -1, j ,  -j) 
(1, -1, k, -k). 

To obtain  the  quaternion  algebra  (denoted H), 
consider  the  vector  space of ordered  sets of four 
numbers  (real  or  complex): a, , b, . . . called 
quaternions$ 

a = aol + a l i+  a2j + a,k 

= (ao, al, az, ad 

= (ao, a). 

‘t For a complete bibliography on works  on quaternions up 
to1912,seeMacfarlane(1904)andtheBulletin(1900-13) 
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This  vector  space is transformed into an associative 
quaternion  algebra via the multiplication xule 

ab = (aobo - albl  - a2b2- a3b3) 
+(aobl+albo+a2b3-a3b2)i 
+(aob2+a2bo+a3bl-a,b3)j 
+ (aob3 + a3b0 + alb2- a2bl)k 

which is obtained from  the multiplication table of 
Q. The  above multiplication rule can easily be 
remembered by expressing it  in terms of the ordi- 
nary dot and  vector  products 

a b = ( a o b o - a ~ b , a o b + b o a + a x b )  
if a x bf 0, the  quaternion product is noncommuta- 
tive. The presence of the dot  and  vector  products in 
the  quaternion product is no coincidence since, 
historically, W J Gibbs  (Crowe 1967b, Bork 1966) 
introduced  these two products by splitting the 
quaternion  product  and by taking a, = bo = 0. It is 
to be noticed that  the  quaternion algebra is distinct 
from the algebra of the quaternion  group which  is 
eight-dimensional. The real quaternion algebra 
H ( R ) ,  which contains R and C as particular cases, 
has  a  unique place among all associative algebras 
over R since it is the only finite-dimensional divi- 
sion algebra (Dickson 1914) over R, besides R and 
C. I shall use both H(R)  and H(C) .  The  latter is 
still an associative algebra  but not a division 
algebra. 

Considering  a quaternion q = qo + qli + q2j + q3k, 
I shall use the following terminology (Hamilton 
1969a): 

sq = 40 
is the scalar part of q ;  

Vq = qli + qd + q& 
is the vector part of q ;  

qc=q0-q1i-q2j-q3k 
is the quaternion  conjugate? of q ;  

q*=q$+qTi+q:j+qzk 

is the complex conjugate of q ;  

Nq = qqc = qcq 
=q;+q:+q;+q: 

is the norm of q. Among  frequently used relations 
are: 

(48) = (SC)* = (q*h 
4-1 = %/WC 
(qlq2)c = 42fq1c 
S(q1q2) = S(q2q1) 
S(q1q2q3) = S(q24391) = S(q3q1q2) 

and  the important  relation 

t Hamilton wrote Kq instead of qc. 

The differential (Hamilton  1969b) of a  quaternion 
product is given  by the relation 

d(qlq2) = ( d q h  + ql(dq2) 
where the  order of the terms  has to  be respected. 
Finally, it  is to  be kept in mind that a scalar 
commutes with any quaternion. 

3. Representations of a group 
By definition, a  representation of a  group G is a 
mapping of G onto a  group T of operators (acting 
on a  vector  space) which preserve the group law, 
i.e., are such that 

T(glIT(g2) = %,g,) 

for any g, of G. The representation is said to be 
linear if the  operators  are linear. 

The theory of representations of groups allows 
the precise definition of the concept of a physical 
quantity  (Kustaanheimo  1955). To this effect, con- 
sider an abstract  group G and a  representation T 
of it acting on a vector space V. If T is a transitive 
transformation  group  (Iyanaga and Kawada 1977) 
of V, then the  elements of V are called physical 
quantities with respect to G. The group T is called 
the covariance group. As illustrations, consider the 
following examples: if G is the abstract three- 
dimensional rotation group and T a  representation 
of it,  the elements of V are called vectors (in the 
physical sense); if G is the general  linear  group, the 
elements of V are called tensors; if G is the 
Clifford group, the elements of V are called 
spinors. Once a physical quantity is defined, physi- 
cal equations are obtained by combining physical 
quantities with respect to  the same  group  and rep- 
resentation. 

As an example of a quaternion representation 
(Du Val 1964b), consider the transformations T 
given by 

q’ = aqb 

where a, b, q, q’ are complex quaternions (of norm 
f0). These transformations  constitute  a  group, the 
product of two transformations T2T1 being defined 
by 

q” = azq’b2 = a2alqblb2. 

The inverse transformation is given  by q = 
a-’q‘b-’. Take for G the group H x  H of ordered 
sets of two  quaternions (of norm f0) with the 
multiplication rule 

(az, b2) x (al, bl) = blb2). 
Since 

T2(a2, b2)T1(alr bl) = T(a2a1, blb2) 
it follows that T is a  representation of H xH. This 
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representation yields several of the  major 
covariance  groups of physics as  particular cases, as 
we shall now see,  together with various physical 
applications of the quaternion formalism. 

4. ‘Ihe rotation group SO(3) 
The three-dimensional  rotation  group SO(3) is the 
group of transformations which leave the quantity 
x*+ y 2 +  z2  invariant.  Any such transformation can 
be expressed in the  quaternion form (Brand  1947) 

q’ = rqr, 

where r is a quaternion such that rr, = 1,  and where 
q =xi+yj+zk,   q’=x’i+y‘j+z‘k.  Reciprocally, 
any transformation q’ = rqr, (with rr, = 1) is a rota- 
tion. The invariance of the norm of q results from 
the relation 

4 ’ 4  = (rqrC)(vJc = qqc 
= x2+ y 2 +  z 2 .  

The inverse transformation is given by q = rcq’r; 
the composition of two rotations is  given  by the 
rule 

4’ = r ~ ( r ~ q r ~ ~ ) r ~ ~  = (r2rl)dr2rl)c. 
Hence, SO(3)  constitutes  a  representataion of 
H ( R )  X H ( R ) .  Since, generally, r2rl # rlr2, it follows 
that the composition of three-rotations is generally 
noncommutative. If r is written in the form 

r = (cos B, sin &) 

where e is a unit vector (i.e. Ne = l ) ,  then the 
transformation q’=  rqr, corresponds to a conical 
rotation of Vq  by 28  around  the vector e. The 
scalar  part of q  remains  invariant under a  rotation 
since 

Sq’ = Sr,rq = Sq. 

As physical applications of S0(3), we shall consider 
crystallography and the kinematics of rigid body 
motion. 

4. l .  Crystallography 
If r takes successively all the values of a finite 
subgroup of real  quaternions,  the transformations 
q’=  rqr,  will constitute  a  subgroup of SO(3) ( r  and 
- r  leading to  the same rotation).  The finite sub- 
groups of real quaternions (Stringham 1881, Shaw 
1907a)  are of five types: 

(i)  cyclic groups (order of the group: N = r )  
m4”Ir = (cos 2.rr/r, sin 27r/re)” 

= (cos 2.rrn/r, sin 2.rrnlre) 
with n = 1 . . . r and  where e is any unit vector; 

(ii) double-dihedral  groups ( N  = 4r)  
,4n/r h P 

with S(pm) = 0, p2 = -1, and n = 1 . . . r, h = 1 . . . 4 ;  

(iii) double-tetrahedral group (N = 24) 
*l, *i, *j, *k 

f(*l*i*j*k); 
(iv) double-octahedral  group ( N  = 48) 

*l,  hi, *j, *k 
i(*l*i*j*k),2-1’2(*l*i) 
2-”’(*1* j), 2-”’(*l * k) 
2-”’(fi* j), 2-’I2(*j * k) 
2-1’2(*k*i); 

(v) double-icosahedral groupt (N = 120) 
*k2n/5,  *jk2n/5 

k2””(i + ~ k ) k ~ ’ ’ ~  * 
(1 + w2)  

(1 + 02)1/2 
f 

k2”/’(i + ok)jk2”’ 

with n, S = 1 . . . 5, o = 2 cos 72” = ;(-l + 5 l I 2 ) .  
These groups, together with the rotation  transfor- 
mation q’=  rqr, and the inversion transformation 
q‘ = qc, yield all 32 classes of crystals (Shaw 1907b, 
1922). 

4.2. Kinematics of rigid  body  motion 
The most general  motion of a rigid body being a 
combination of a  translation  and  a rotation, it can 
therefore  be represented by the transformation 
(Tait 1890a, Laisant 1877) 

q’ = S + rqr, (1) 

with rr, = 1 and where S corresponds to  the transla- 
tion ( r  and S are functions of the time t). By taking 
the derivative with respect to  the time, one obtains 

dq‘ldt = [ds/dt + (dr/dt)qr, + rq(dr,/dt)] + r(dq/dt)r, 

or 

dq’/dt = [ds/dt +f(wrqrc- rqr,w)]+ r(dq/dt)r, 

= [ds/dt + V(orqr,)]+ r(dq/dt)rc 

where o = 2(dr/dt)rc is the instantaneous  angular 
velocity quaternion (6.1 is a vector since So = 0, 
because of the relation rr,= 1). If q, for example, 
corresponds to  the coordinates with respect to a 
system rigidly attached to  the body and q’ to  the 
coordinates with respect to a fixed inertial system, 
then the quantity in square brackets  corresponds to 
the velocity of a fixed point of the rigid body and 
the second term  to  the relative velocity. A second 
differentiation of equation (1) yields 

t Compare with Klein (1913). 
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d2q‘/dt2 = [d2s/dt2+ (d2r/dt2)qrc+  rq(d2rJdt2) 
+ 2(dr/dt)q(drC/dt)l 
+2[(dr/dt)(dq/dt)rc+ r(dqldt)(dr,/dt)l 
+ r(d2q/dt2)rc. 

The quantity in the first square brackets  corres- 
ponds to  the acceleration of a fixed point of the 
rigid body;  the second  term  corresponds to  the 
Coriolis acceleration,  and the last term  to  the rela- 
tive acceleration.  It  seems difficult to conceive a 
simpler derivation of this useful relation. 

5. The Lorentz group 
The  Lorentz group is the group of homogeneous 
transformations which conserve the quantity cZt2- 
x2-y2-z2. If there is no time reversal and no 
space reflection, the transformations are said to be 
orthochronous  proper. Any orthochronous proper 
Lorentz transformation can be  expressed by a 
quaternion  transformation (Synge 1972b, Cailler 
1917) of the type 

q’ = aqar (2) 

where a is a complex quaternion such that aa, = 1, 
and where  q = (ct, ix,  iy, iz),  q’ = (ct’, ix‘, iy‘, iz’)t. I 
shall refer to  quaternions such that  qf = q as min- 
quats (minkowskian quaternions)$. The above 
transformation  has the usual six parameters  and 
conserves the norm since 

4‘4: = (aqaf)(asaf)c = qqc. 

It also preserves the minquat  character of q since 

4’: = (aqa$)f = aqa$ = q’. 

The composition of two Lorentz transformations 
follows the rule 

q’ = a2[alq(al)Tl(a2)f = (a2al)q(a2alE 
= a3q(aJf 

with a3=  azal. Since the transformations  (2) do 
form a  group, and from the considerations  above, it 
follows that  the  Lorentz group  constitutes  a  rep- 
resentation of H(C)  x H ( C ) .  

A pure  Lorentz transformation is a Lorentz 
transformation which contains no rotation  and is of 
the type 

q’ = bqbf 

t From now on, and in the  rest of this paper, bold face 
type will be used for the  elements i, 1, k of the abstract 
quaternion group;  i in ordinary  roman type represents 
the complex imaginary (-1)’”. 

$ The  term is used by Synge (1972a). In contradistinc- 
tion to Synge, I shall adopt  the form  q = (ct, ix, iy, iz) 
instead of q = (ict, x, y, z ) ,  in order  to have ds2 = 
dq dq, > 0. 

where b is a  minquat such that bb, = 1. A  general 
Lorentz transformation is obtained by combining a 
pure  Lorentz transformation bqbf  with a three- 
dimensional rotation? rqrc. This can be done in two 
ways since q’= b(rqr,)bf is generally different from 
q’ = r(bqbf)r,. 

Reciprocally, any general Lorentz transformation 
q’ = aqaf can be  decomposed into a pure  Lorentz 
transformation  and  a  rotation. The problem simply 
consists in finding two quaternions b and r such 
that a = br (a = r’b’) where b (b’) is a unit minquat 
(i.e. a  minquat of norm equal  to 1) and r (r‘) a  real 
unit quaternion (rr, = 1, r’r; = 1). The  equation a = 
br (and similarly a = r’b’) with the above  conditions 
is solved as follows (Conway 1948, 1953b). Since 

a f  = rfbf = r,b 

one has aaf = b2, which is an equation of the type 
d = b2, where  d is a unit minquat. To solve this 
equation, write 

2b2 = 2d 
b2d = d2  
b2d, = 1 

add,  and obtain 

b2(2 + d + d,) = (1 + d)’. 

The solution is thus given  by 

b=*(l+d)/lN(l+d)l’” 

where  d = aa: in the case here considered, and 
where  the vertical bars  stand for  the absolute value. 
Finally, one verifies that this is indeed  a  solution. 
The  quaternion r of the  rotation is given  by 

r = b,a 
= * (a  + a*)/\N(l+  aaf)l”2. 

The problem of the reduction of a Lorentz trans- 
formation into a pure  Lorentz transformation and a 
rotation is thus solved in the most general case. As 
an immediate  application, consider a Lorentz trans- 
formation  obtained  from the composition of two 
pure Lorentz  transformations. Since a = blbz will  in 
general be a complex quaternion (not a  minquat), 
one will generally have a = br. Hence,  the resulting 
Lorentz transformation will generally contain a  ro- 
tation; this is the essence of the Thomas precession 
effect (Thomas 1926,  1927). As further applica- 
tions of the  Lorentz group, we shall now briefly 
discuss the special theory of relativity and classical 
electromagnetism. 

5.1. The special theory of relativity 
Consider the  pure Lorentz  transformation 

q’ = bqbf 
t The previous  results  concerning rotations  are not 
affected by the introduction of minquats. 
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with 
b = (cosh 4, i  sinh &) 
q = (ct, ix, iy, iz) 
q’ = (ct, ix’, iy’, iz’) 

and where  e is a  real  unit  vector. The four-veclocity 
transforms according to  the relation 

U’ = bubr 

where U = dq/ds, U‘ = dq’/ds,  and ds’= dq dq,.  If 
U = 1, one  has 

U’ = bbr = (cosh 4, i  sinh &)’ 
= (cosh 29, i sinh 2&). 

29 

If, furthermore, 
cosh 24 = (1 - U’/C’)-~’’ = y 
tanh 24 = -u/c 

then 
U’ = (y, -iyu/ce). 

Thus, the above  transformation  transforms  a  point 
at rest into a  point moving with a  speed U in the 
direction -e; it corresponds to a standard  Lorentz 
transformation (from a passive point of view) in the 
e  direction. 

The  four-momentum of a  particle of rest mass m 
is defined by p = mu and satisfies the relation ppc = 
m’, since uu,= I.  The four-angular  momentum of a 
material point can be defined by 

L = V(qp,) 
= [0, r x p + i(Er/c -c@)]. 

Under an arbitrary Lorentz transformation, L 
transforms according to  the  rule 

L’ = V(q‘p:) = V(aqaTa*p,a,) 
= V{a[S(qpJ + V(qpJlaJ 
= V(aLa,) 
= aLa, 

where the last equation follows from the relation 
S(aLa,)=O. Hence,  the transformation  rule of L 
yields the relativistic invariant 

LL, = (r x p)’- (Er/c -c@)*. 

5.2. Classical electromagnetism 
Consider the  four vector  potential A = (4/c,  iA), 
the relativistic operator 

and  the  quaternion conjugate operator 

D,= (h, iV). 

Under a Lorentz transformation, D transforms? 
like 

q = (ct, ix,  iy, iz) 
D‘= aD( )a:. 

The quaternion 

F = D,A 

is equal to 

F = (0, -B - iE/c) 

if one  adopts  the  Lorentz gauge S(D,A) = O  and 
the usual definitions of the electric and magnetic 
fields E and B, respectively. Under a Lorentz 
transformation, F transforms according to F’ = 
a*FaT, which yields the relativistic invariant 

F F ;  = m, 
= (B’- E’lc’) + 2iB  E/c. 

Furthermore, since 

DD,= D,D = - 0 
a’ a’ a’ a’ 

2 a t Z  ax2 ay’ a 2  
- - - - 

Maxwell’s eight equations for the vacuum are given 
by one  quaternion  equation (Silberstein 1914, Cail- 
ler 1917, Hermann 1974, Imaeda 1976, Edmonds 
1978), namely 

or 

where J = ( p c ,  ipu) is the four  current density. Max- 
well’s equations can also be  written in the form 

DADAc)= poJC 

where DA, = (0, -B + iE/c). 

one obtains 
If one applies the  operator D, to equation (3) 

DJDDA) = poDJ. 
Since S(DJ) = 0 expresses the conservation of 
electric  charge, it follows that  the gauge condition 
has to satisfy the equation 

SD,(OA) = SO(D,A) = U(SD,A) = 0 
which is less restrictive than  the  Lorentz gauge 
S(D,A) = 0. If DJ = 0,  one has the relation 

D,(DF) = [0, U(B + iE/c)] 
= 0. 

t To prove this, use the relation 
a a ax- 

ax’. ax-  ax’* 

write Out q’ = aqa:, q = a,q’a*, and compare the coeffi- 
cients. 

- = _ . _  
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The  equation of motion of a particle with an 
electric charge E in an electromagnetic field is given 
by 

dp/ds = &[(DA,)u- u(D,A)] 

where  p = mu is the four-momentum of the 
particle. The relativistic covariance of the  equation 
of motion is manifest since a  quaternion of the type 
fgch transforms like q. 

6. The general theory of relativity (GTR) group 
The GTR groupt is simply the generalised Lorentz 
group 

U' = auar  (4) 

where a is an arbitrary  function such that au, = 1 
and  where W is a  minquat. At any given space-time 
point, the GTR group  reduces to  the  Lorentz group. 
By differentiating relation  (4), one obtains 

du'/ds = (da/ds)uat+  au(dar/ds) + a(du/ds)a$ (5) 
where ds2 = dq dq, and  dq = (c dt, i  dx,  i  dy,  i dz). 

As an application, consider U' to  be  the four- 
velocity of a particle in its instantaneous rest frame 
(thus  du'/ds = 0) and U to be the four-velocity of 
the particle with respect to a fixed inertial system. 
After rearrangement (and taking into account the 
relation a, da  = -da,a,  since aa,= l), relation (5) 
yields 

du/ds = -[(a, da/ds)w - u(a, da/ds)*]. 

This  equation  corresponds to  the equation of mo- 
tion of the general  theory of relativity. If the func- 
tion a,da/ds is known, the motion is determined. 
Newton's law of gravitation, for example, is ob- 
tained by considering the nonrelativistic limit and 
by taking 

2a,  dalds = [0, (cr2)"(L + iA/c)] 

where L = r X v is the angular  momentum per unit 
mass, and where 

A = ( v x L - G M r / r )  

is the misnamed Runge-Lenz vector  (Hamilton 
1969c, Tait  1890b, Goldstein 1975,  1976)  per unit 
mass of the particle. 

7. Tbe clifford algebra 
The Clifford algebra (Shaw 1907c, Clifford 1878) is 
the algebra with n generators e , .  . . e,,, such that 

ef = -1, eiei + eiei = 0 

with i, j =  1 . .  . n ( i f  j ) ,  and 

ei (eiek 1 = (eei )ek 
with i, j ,  k = 1 . . . n. The  order of the algebra is  2". 

t For  a historical analysis, see  Girard 1981 

The Clifford algebra is directly linked to  quatern- 
ions via the following theorem (Shaw 1907c, 
Clifford 1968b). 
Theorem: If n = 2m (m integer), the Clifford 
algebra (of order 2" = 4"') is the direct  product of m 
quaternion algebras. If n = 2m + 1, the Clifford 
algebra (of order 2" = 2'"'+') is the direct  product 
of m quaternion algebras and the algebra 

0 ; = 0 0 = 0 1  

WOW, = W 1 0 0  = W,. 

As illustrations of the  theorem, we shall consider 
the cases for n = 2, 3, 4. 

n = 2: The Clifford algebra  contains the four 
elements -1, e, ,  e2, e,e2, and is isomorphic to the 
quaternion  algebra 1, i ,  j, k over R or C, the 
elements e , ,  e2 being respectively associated with i 
and j. 

n = 3: The Clifford algebra is isomorphic to  the 
algebra given by the direct  product 

(1, i ,  j, k) x (o0, 4 
the generators e , ,  e2, e3 of the Clifford algebra 
being respectively associated with  iw0, ioo, kWl. 

The general  element of this algebra can be  written 
in the  form q +up, where q and p are quaternions 
and  where W satisfies the relation W' = 1 and com- 
mutes with any quaternion. Clifford was to call the 
element q + o p  a  biquaternion (Clifford 1968a, 
1968c)$. 

n = 4: This Clifford algebra is isomorphic to  the 
algebra  obtained by forming the direct product 

(El ,  i t ,  k1) x 032, i2, jz, k2) 

where E stands  for  the unit element of the  quatern- 
ion group;  the four  generators e, ,  e2, e3, e4 of the 
Clifford algebra correspond respectively to ilE2, 
jlE2, i2E1, j2El. As is  well known, Dirac's matrices 
constitute  a  representation of this Clifford algebra. 
Expressed in their standard form (Fliigge 1974a), 
the Dirac  matrices y1, Y Z ,  ~ 3 ,  y4, YS = YlYZY3Y4 are 
respectively equivalent to  the  quaternion  operators 
(Conway 1953a, Synge 1972~) :  

i( ) i ,  j (  )k, i (  )j, k( )k, i (  )k 
operating on the complex function 

+=40++1i++2j++3k;  

the composition of two operators, say j( )k fol- 
lowed by  i( ) i ,  is  given  by the usual rule: ij( )k i .  
Dirac's relativistic wave equation (FXigge 1974b) 
can thus  be written in the quaternion  form 

(iDl)dd + W Z ) + ~  + (iQ)+j + (kDd+k + x4 = 0 
where: 

$ Clifford's biquaternions  are  distinct  from  Hamilton's 
biquaternions;  the  latter are simply complex  quatern- 
ions. 
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D p  = -- (ic/hc)Ap 
a 

ax 
A. = i4 
e 4 =  V 

Do = -(i/c)(a/at). 

More symmetrical forms  are possible (Conway 
1953c,  Edmonds  1974). The function J, is an 
example of a  spinor in four dimensions. More 
generally, the Clifford algebra allows the definition 
of spinors in n dimensions (Chevalley 1954, Waer- 
den 1974). 

8. Other groups 
As further  and final applications of quaternions to 
physics, let us briefly mention SU(2) and the con- 
formal group. 

8.1. The unitary group SU(2) 
The unitary group  SU(2) is the group of 2 x 2  
unitary matricest of determinant 1. This  group is 
isomorphic to  the group of real quaternions ,via the 
correspondence  (Du Val 1964a) 

with det A =  Nq = 1. 

8.2. The conformal group 
It is well-known that Maxwell's equations in 
vacuum are covariant not only with respect to the 
Lorentz  group  but also with respect to the confor- 
mal group. This 15 (real)  parameter  group can be 
defined (Bessel-Hagen 1921) as the group of trans- 
formations such that if N(dq) =0, with dq = 
(c dt,idx,  idy,  idz), then N(dq')=O. Conse- 
quently, the group contains in particular the space- 
time translations, the Lorentz transformations, and 
the dilatations q' = Aq, where A is a  constant. The 
transformations relative to  the four remaining 
parameters can be expressed in quaternion form by 
the  formulaet: 

is easy to show that  the conformal transformations 
given by equation (6) form  a group, the inverse 
transformation being given by 

q = (1 - q'uJ1q'. 

Furthermore, one has the relations Q :  

q a d  = q'a,q 
N(dq') = (Nq'/Nq)'N(dq) 

Nq' = Nq/N(l+ qa,) 

dq' = (1 + qa,)"dq( 1 + a,q)". 

From  the second relation, it follows that the trans- 
formations  here considered are indeed conformal 
transformations. 

9. Conclusion 
The  paper has related major covariance groups of 
physics to  the quaternion  group  and  has given 
several physical applications, most of them at 
undergraduate level. It is hoped  that the treatment 
of the representations of the quaternion  group will 
have shown that  quaternion  group theory is quite 
accessible to undergraduate  students and might 
further  their comprehension of physics by exhibit- 
ing the deep unity of physical phenomena. 
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